D C T
Discrete Cosine Transform
$\displaystyle{X_k =\sum^{N-1}_{n=0}{x_n\Bigl(\cos\Bigl(\frac{-2\pi kn}{N}\Bigr) + i\sin\Bigl(\frac{-2\pi
kn}{N}\Bigr)\Bigr)}}$
$k = 0, ... , N-1$
$$
\downarrow \\
$$
$$
X_k = \sum^{N-1}_{n=0}{x_n \cos\left[\frac{(2n+1)k\pi}{2N}\right]},\quad k=0,...N-1
$$
\[G_{u,v} =
\displaystyle{\frac14\alpha(u)\alpha(v)\sum^7_{x=0}\sum^7_{y=0}g_{x,y}\cos\left[\frac{(2x+1)u\pi}{2\times8}\right]\cos\left[\frac{(2y+1)v\pi}{2\times8}\right]}\]
\[G_{u,v} =
\displaystyle{\frac14\alpha(u)\alpha(v)\sum^7_{x=0}\sum^7_{y=0}g_{x,y}\cos\left[\frac{(2x+1)u\pi}{2\times8}\right]\cos\left[\frac{(2y+1)v\pi}{2\times8}\right]}\]
- $u$: 수평 DCT, $0\leq u<8,\,u\in\mathbb{Z}$< /li>
- $v$: 수직 DCT, $0\leq v<8,\,v\in\mathbb{Z}$< /li>
- $\alpha(i)=\begin{cases} \frac{1}{\sqrt{2}}, \quad &(i=0)\\ 1, \quad &(i>1)\end{cases}$: 정규화를 위한 상수
- $g_{x,y}$: $(x,y)$에서 픽셀 값
- $G_{u,v}$: $(u,v)$에서 DCT 계수 값
$$
G=\left[\begin{array}{rrrrrrrr}
-489&-31.16&22.39&24.78&9.25&4.69&35.1&-7.61\\
-134.08&109.79&-39.62&10.48&-9.89&-32.28&21.12&5.68\\
-134.97&-253.81&-79.67&118.39&-19.68&40.1&-8.07&11.38\\
-65.01&-2.69&269.96&-18.72&39.46&13.22&25.15&-10.85\\
96.25&221.86&4.16&-130.05&41&2.72&-31.76&-30.57\\
-20.32&22.37&-23&-54.62&27.23&-16.83&-3.01&10.17\\
-42.32&-17.35&-26.57&23.94&65.52&22.06&13.67&34.94\\
-31.23&-14.17&20.34&-5.07&25.08&-80.53&31.89&13.76
\end{array}\right]\quad
$$
$$
G=\left[\begin{array}{rrrrrrrr}
-489&-31.16&22.39&24.78&9.25&4.69&35.1&-7.61\\
-134.08&109.79&-39.62&10.48&-9.89&-32.28&21.12&5.68\\
-134.97&-253.81&-79.67&118.39&-19.68&40.1&-8.07&11.38\\
-65.01&-2.69&269.96&-18.72&39.46&13.22&25.15&-10.85\\
96.25&221.86&4.16&-130.05&41&2.72&-31.76&-30.57\\
-20.32&22.37&-23&-54.62&27.23&-16.83&-3.01&10.17\\
-42.32&-17.35&-26.57&23.94&65.52&22.06&13.67&34.94\\
-31.23&-14.17&20.34&-5.07&25.08&-80.53&31.89&13.76
\end{array}\right]\quad
$$
$$
G=\left[\begin{array}{rrrrrrrr}
-489&-31.16&22.39&24.78&9.25&4.69&35.1&-7.61\\
-134.08&109.79&-39.62&10.48&-9.89&-32.28&21.12&5.68\\
-134.97&-253.81&-79.67&118.39&-19.68&40.1&-8.07&11.38\\
-65.01&-2.69&269.96&-18.72&39.46&13.22&25.15&-10.85\\
96.25&221.86&4.16&-130.05&41&2.72&-31.76&-30.57\\
-20.32&22.37&-23&-54.62&27.23&-16.83&-3.01&10.17\\
-42.32&-17.35&-26.57&23.94&65.52&22.06&13.67&34.94\\
-31.23&-14.17&20.34&-5.07&25.08&-80.53&31.89&13.76
\end{array}\right]\quad
$$
Quantization
$$
G=\left[\begin{array}{rrrrrrrr}
-489&-31.16&22.39&24.78&9.25&4.69&35.1&-7.61\\
-134.08&109.79&-39.62&10.48&-9.89&-32.28&21.12&5.68\\
-134.97&-253.81&-79.67&118.39&-19.68&40.1&-8.07&11.38\\
-65.01&-2.69&269.96&-18.72&39.46&13.22&25.15&-10.85\\
96.25&221.86&4.16&-130.05&41&2.72&-31.76&-30.57\\
-20.32&22.37&-23&-54.62&27.23&-16.83&-3.01&10.17\\
-42.32&-17.35&-26.57&23.94&65.52&22.06&13.67&34.94\\
-31.23&-14.17&20.34&-5.07&25.08&-80.53&31.89&13.76
\end{array}\right]\quad
$$
$$
Q=\left[\begin{array}{rrrrrrrr}
16& 11& 10& 16& 24& 40& 51& 61 \\
12& 12& 14& 19& 26& 58& 60& 55 \\
14& 13& 16& 24& 40& 57& 69& 56 \\
14& 17& 22& 29& 51& 87& 80& 62 \\
18& 22& 37& 56& 68& 109& 103& 77 \\
24& 35& 55& 64& 81& 104& 113& 92 \\
49& 64& 78& 87& 103& 121& 120& 101 \\
72& 92& 95& 98& 112& 100& 103& 99\\
\end{array}\right]
$$
$$
B_{j,k} = \Bigl\lfloor \frac{G_{j,k}}{Q_{j,k}}\Bigr\rceil\quad 0\leq j<7, 0\leq k<7
$$
$$
B=\left[\begin{array}{rrrrrrrr}
1&-1&-3&1&1&-1&0&1\\
-1&1&0&0&0&0&0&0\\
-1&0&2&-1&0&0&0&0\\
0&0&-1&0&0&0&0&0\\
-1&0&1&0&0&0&0&0\\
0&0&0&0&0&0&0&0\\
1&0&0&0&0&0&0&0\\
0&0&0&0&0&0&0&0
\end{array}\right]
$$
Entropy Encoding
$$
\begin{array}{rrrrrrrr}
&-31 \\
&-3 & -11 \\
&-10 & 9 & 2 \\
&2 & -3& -20& -5 \\
&5 & 0 & -5& 1 & 0 \\
&0 & 0 & 5 & 12 & 10 & -1\\
&-1& 1 & 0 & -1 & 0 & -1 & 1 \\
&0 & 0 & 1 & 1 & -2 & 0 & ~~0 & ~0 \\
&0 & 0 & -1& 1 & 0 & 0 & 0 \\
&0 & 0 & 0 & 0 & 0 & 0 \\
&0 & 1 & 0 & 0 & 0 \\
&0 & 0 & 0 & 0 \\
&-1 & 0 & 0 \\
&0 & 0 \\
&0
\end{array}
$$