$\frac{1}{x}$
$$
\begin{align*}
&A = \{ x\ |\ 0 < x < 1,\ &x \in \R \} \\
&B=\{ x\ |\ 1 < x,\ &x \in \R \}
\end{align*}
$$
$$
\begin{align*}
&A = \{ x\ |\ 0 < x < 1,\ &x \in \R \} \\
&B=\{ x\ |\ 1 < x,\ &x \in \R \}
\end{align*}
$$
$$
\huge n(A) < n(B)\quad\text{?}
$$
$$
\begin{align*}
&A = \{ x\ |\ 0 < x < 1,\ &x \in \R \} \\
&B=\{ x\ |\ 1 < x,\ &x \in \R \}
\end{align*}
$$
$$
\huge n(A) = n(B)\quad\text{!}
$$
$\huge f: (0,\ 1) \rightarrow (1,\ \infty)$
$\huge f: (0,\ 1) \rightarrow (1,\ \infty)$
$\huge f(x) = \frac{1}{x}$
$\huge f(x) = \frac{1}{x}$