Circle Inversi⊚n

20118 이도이

복소평면, 극좌표, 오일러 등식, 원반전

$\frac{1}{x}$

$\frac{1}{x}$

$$ \begin{align*} &A = \{ x\ |\ 0 < x < 1,\ &x \in \R \} \\ &B=\{ x\ |\ 1 < x,\ &x \in \R \} \end{align*} $$
$$ \begin{align*} &A = \{ x\ |\ 0 < x < 1,\ &x \in \R \} \\ &B=\{ x\ |\ 1 < x,\ &x \in \R \} \end{align*} $$
$$ \huge n(A) < n(B)\quad\text{?} $$
$$ \begin{align*} &A = \{ x\ |\ 0 < x < 1,\ &x \in \R \} \\ &B=\{ x\ |\ 1 < x,\ &x \in \R \} \end{align*} $$
$$ \huge n(A) = n(B)\quad\text{!} $$
$\huge f: (0,\ 1) \rightarrow (1,\ \infty)$
$\huge f: (0,\ 1) \rightarrow (1,\ \infty)$




$\huge f(x) = \frac{1}{x}$
$\huge f(x) = \frac{1}{x}$

Complex Plane

Complex Plane


$z=x+yi$

Complex Plane


$z_0=1+2i$

Eul$e$r's Formula

$\huge e^{i\theta}=\cos\theta+i\sin\theta$
$\huge e^{i\theta}=\cos\theta+i\sin\theta$
$\huge r\cdot e^{i\theta}=\cos\theta+i\sin\theta$

$\vec{P}$ola$r$ Coordinate

$\vec{P}$ola$r$ Coordinate


$(r,\ \theta)$

Complex $\vec{P}$ola$r$


$(r,\ \theta) \rightarrow r\cdot e^{i\theta}$

Gabriel's Horn

Gabriel's Horn

Gabriel's Horn

Gabriel's Horn

Circle Inversion

Circle Inversion

n $$ (r,\theta) \rightarrow (\frac{1}{r}, \theta) $$

Circle Inversion

$$ r\cdot e^{i\theta} \rightarrow \frac{1}{r}\cdot e^{i\theta} $$

Circle Inversion

원반전된 원은 여전히 원이다.

Circle Inversion

대상 원이 기준 원의 중심을 지날때,
반전된 원은 직선이 된다.